skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Yuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Latent Gaussian process (GP) models are widely used in neuroscience to uncover hidden state evolutions from sequential observations, mainly in neural activity recordings. While latent GP models provide a principled and powerful solution in theory, the intractable posterior in non-conjugate settings necessitates approximate inference schemes, which may lack scalability. In this work, we propose cvHM, a general inference framework for latent GP models leveraging Hida-Matérn kernels and conjugate computation variational inference (CVI). With cvHM, we are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods. The reparameterization of stationary kernels using Hida-Matérn GPs helps us connect the latent variable models that encode prior assumptions through dynamical systems to those that encode trajectory assumptions through GPs. In contrast to previous work, we use bidirectional information filtering, leading to a more concise implementation. Furthermore, we employ the Whittle approximate likelihood to achieve highly efficient hyperparameter learning. 
    more » « less
  2. Latent variable models have become instrumental in computational neuroscience for reasoning about neural computation. This has fostered the development of powerful offline algorithms for extracting latent neural trajectories from neural recordings. However, despite the potential of real-time alternatives to give immediate feedback to experimentalists, and enhance experimental design, they have received markedly less attention. In this work, we introduce the exponential family variational Kalman filter (eVKF), an online recursive Bayesian method aimed at inferring latent trajectories while simultaneously learning the dynamical system generating them. eVKF works for arbitrary likelihoods and utilizes the constant base measure exponential family to model the latent state stochasticity. We derive a closed-form variational analog to the predict step of the Kalman filter which leads to a provably tighter bound on the ELBO compared to another online variational method. We validate our method on synthetic and real-world data, and, notably, show that it achieves competitive performance. 
    more » « less
  3. The macaque middle temporal (MT) area is well known for its visual motion selectivity and relevance to motion perception, but the possibility of it also reflecting higher-level cognitive functions has largely been ignored. We tested for effects of task performance distinct from sensory encoding by manipulating subjects' temporal evidence-weighting strategy during a direction discrimination task while performing electrophysiological recordings from groups of MT neurons in rhesus macaques (one male, one female). This revealed multiple components of MT responses that were, surprisingly, not interpretable as behaviorally relevant modulations of motion encoding, or as bottom-up consequences of the readout of motion direction from MT. The time-varying motion-driven responses of MT were strongly affected by our strategic manipulation—but with time courses opposite the subjects' temporal weighting strategies. Furthermore, large choice-correlated signals were represented in population activity distinct from its motion responses, with multiple phases that lagged psychophysical readout and even continued after the stimulus (but which preceded motor responses). In summary, a novel experimental manipulation of strategy allowed us to control the time course of readout to challenge the correlation between sensory responses and choices, and population-level analyses of simultaneously recorded ensembles allowed us to identify strong signals that were so distinct from direction encoding that conventional, single-neuron-centric analyses could not have revealed or properly characterized them. Together, these approaches revealed multiple cognitive contributions to MT responses that are task related but not functionally relevant to encoding or decoding of motion for psychophysical direction discrimination, providing a new perspective on the assumed status of MT as a simple sensory area.

    SIGNIFICANCE STATEMENTThis study extends understanding of the middle temporal (MT) area beyond its representation of visual motion. Combining multineuron recordings, population-level analyses, and controlled manipulation of task strategy, we exposed signals that depended on changes in temporal weighting strategy, but did not manifest as feedforward effects on behavior. This was demonstrated by (1) an inverse relationship between temporal dynamics of behavioral readout and sensory encoding, (2) a choice-correlated signal that always lagged the stimulus time points most correlated with decisions, and (3) a distinct choice-correlated signal after the stimulus. These findings invite re-evaluation of MT for functions outside of its established sensory role and highlight the power of experimenter-controlled changes in temporal strategy, coupled with recording and analysis approaches that transcend the single-neuron perspective.

     
    more » « less
  4. The modification by molybdenum trioxide (MoO3) buffer layer on the electronic structure between Co and black phosphorus (BP) was investigated with ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). It was found that the MoO3 buffer layer could effectively prevent the destruction of the outermost BP lattice during the Co deposition, with the symmetry of the lattice remaining maintained. There is a noticeable interfacial charge transfer in addition to the chemical reaction between Co and MoO3. The growth pattern of Co deposited onto the MoO3/BP film is the island growth mode. The observations reveal the significance of a MoO3 buffer layer on the electronic structure between Co and black phosphorus and provide help for the design of high-performance Co/BP-based spintronic devices. 
    more » « less
  5. Abstract

    Recently, chiral metal‐organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal‐centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo‐ or electro‐chiroptical properties. In particular, ionic small‐molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal‐organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented.

     
    more » « less
  6. Abstract The interfacial modification effect of the molybdenum trioxide (MoO 3 ) buffer layer inserted between Al and black phosphorus (BP) was investigated with photoemission spectroscopy. The results show that MoO 3 buffer layer can effectively prevent the destruction of the outermost BP lattice by Al thermal deposition and change the interface electronic structure between Al and BP. At the MoO 3 /BP interface, there is an interface dipole pointing from MoO 3 to BP. During the metal deposition process, an interfacial chemical reaction between Al and MoO 3 was found. These observations would provide insight for fabricating high-performance BP-based devices. 
    more » « less
  7. Nonlinear state-space models are powerful tools to describe dynamical structures in complex time series. In a streaming setting where data are processed one sample at a time, simultaneous inference of the state and its nonlinear dynamics has posed significant challenges in practice. We develop a novel online learning framework, leveraging variational inference and sequential Monte Carlo, which enables flexible and accurate Bayesian joint filtering. Our method provides an approximation of the filtering posterior which can be made arbitrarily close to the true filtering distribution for a wide class of dynamics models and observation models. Specifically, the proposed framework can efficiently approximate a posterior over the dynamics using sparse Gaussian processes, allowing for an interpretable model of the latent dynamics. Constant time complexity per sample makes our approach amenable to online learning scenarios and suitable for real-time applications. 
    more » « less